1. Head-up display system
Head-up
display, atau disingkat HUD, adalah setiap tampilan yang transparan menyajikan
data tanpa memerlukan pengguna untuk melihat diri dari sudut pandang atau yang
biasa. Nama Head-Up Display berasal dari penggunaan teknologi yang dilakukan
user dengan melihat informasi dengan kepala "naik" dan melihat
kedepan, bukan memandang miring ke instrumenyang lebih rendah.
Sejarah HUD
HUD pertama kali diperkenalkan pada tahun 1950-an, dengan adanya teknologi reflektif gunsight pada perang dunia ke dua. Saat itu, suatu tembakan dihasilkan dari sumber listrik yang diproyeksikan ke sebuah kaca. Pemasangan proyektor itu biasanya dilakukan pada bagian atas panel instrumen di tengah daerah pandang pilot, antara kaca depan
dan pilot sendiri.
Sejarah HUD
HUD pertama kali diperkenalkan pada tahun 1950-an, dengan adanya teknologi reflektif gunsight pada perang dunia ke dua. Saat itu, suatu tembakan dihasilkan dari sumber listrik yang diproyeksikan ke sebuah kaca. Pemasangan proyektor itu biasanya dilakukan pada bagian atas panel instrumen di tengah daerah pandang pilot, antara kaca depan
dan pilot sendiri.
Sebuah contoh awal dari apa yang sekarang dapat disebut sebagai head-up layar adalah Sistem Proyektor AIlnggris MrkVIII radar pencegatan udara dipasang kebeberapa deHavilland Mosquito pejuang malam, dimana layar radar diproyeksikan kekaca depan pesawat buatan bersama cakrawala, memungkinkan pilot untuk melakukan penangkapan tanpa mengalihkan pandangan dari kaca depan.
Dengan menggunakan reflektif gunshight pada pertempuran udara, pilot harus “mengkalibrasi” pandangannya secara manual. Hal ini dilakukan dengan memasukkan lebar sayap target pada sebuah penyetelan roda yang diikuti dengan penyesuaian mata, sehingga target yang bergerak dapat disesuaikan dengan bingkai yang diarahkan kepadanya. Dengan melakukan hal tersebut, maka hasilnya akan terjadi kompensasi terhadap kecepatan, penembakan peluru, G-load, dll.
Pada tahun 1950-an, gambar dari efletif gunsight diproyeksikan ke sebuah CRT (Cathode Ray Tube) yang dikendalikan oleh komputer yang terdapat pada pesawat. Hal inilah yang menandai kelahiran teknologi HUD modern. Komputer mampu mengkompensasi akurasi dan menyesuaikan tujuan dari kursor secara otomatis terhadap faktor, seperti range, daya percepatan, tembakan peluru, pendekatan target, G-load, dll.
Penambahan data penerbangan terhadap tanda bidikan, memberikan perananan kepada HUD sebagai pembantu pilot dalam melakukan pendaratan, serta membantu pilot di dalam pertempuran udara. Pada tahun 1960-an, HUD digunakan secara ekstensif dalam melakukan pendaratan. HUD menyediakan data-data penerbangan penting kepada pilot, sehingga pilot tidak perlu melihat peralatan pada bagian dalam dari panel.
Penerbangan komersial HUD pertama kali diluncurkan pada tahun 1980-an. HUD pertama kali digunakan oleh Air Inter pada pesawat MD-80. Namun, masih tergantung pada FD pesawat untuk bimbingan dan hanya bekerja sebagai repeater informasi yang ada. Pada tahun 1984, penerbangan dinamika Rockwell Collins sudah berkembang dan mendapatkan sertifikasi HUD “standalone” yang ertama sebagai pesawat komersial, yang disebut HGS (Head Up Guidance System). Sistem “stand alone” ini mendatangkan kesempatan untuk mengurangi waktu lepas landas dan pendaratan minimum. Pada tahun 1984, FAA menyetujui pendaratan CAT IIIA tanpa menyediakan pemasangan sistem autoland atau autothrottle pada pesawat yang dilengkapi dengan HGS.
Sampai beberapa tahun yang lalu, Embraer 190 dan Boeing 737 New Generation Aircraft (737-600,700,800, dan 900 series) adalah satu-satunya pesawat penumpang komersial untuk datang dengan HUD opsional. Namun, kini teknologi ini sudah menjadi lebih umum untuk pesawat seperti Canadair RJ, Airbus A318 dan beberapa jet bisnis. HUD telah menjadi peralatan standar Boeing 787. Dan lebih jauh lagi, Airbus A320, A330, A340 dan A380 keluarga yang sedang menjalani proses sertifikasi untuk HUD. Selain pada pesawat komersial, HUD juga sudah mulai digunakan pada mobil dan aplikasi lainnya. BMW merupakan pabrikan otomotif pertama yang meluncurkan produk massal dengan teknologi HUD pada kaca depannya. Teknologi ini tak hanya memberi kenyamanan bagi pengemudi, melainkan juga keselamatan berkendara.
HUDs terbagi menjadi 3generasi yang mencerminkan teknologi yang digunakan untuk menghasilkan gambar.
GenerasiPertamaMenggunakan CRT untuk menghasilkan sebuah gambar pada layar fosfor, memiliki kelemahan dari degradasi dari waktu ke waktu dari lapisan layar fosfor. Mayoritas HUDs beroperasi saat ini adalah dari jenis ini.
GenerasiKeduaMenggunakan sumber cahaya padat, misalnya LED,yang dimodulasi oleh sebuah layar LCD untuk menampilkan gambar. Ini menghilangkan memudar dengan waktu dan juga tegangan tinggi yang dibutuhkan untuk system generasi pertama. Sistem ini pada pesawat komersial.
GenerasiKetigaMenggunakan wave guides optic untuk menghasilkan gambar secara langsung dalam Combiner dari pada menggunakan system proyeksi.
Penggunaan HUD dapat dibagi menjadi 2 jenis :
*HUD yang terikat pada badan pesawat atau kendaraan chasis. Sistem penentuan gambar yang ingin disajikan semata-mata tergantung pada orientasi kendaraan.
*HMD, helm dipasang yang menampilkan HUD dimana elemen akan ditampilkan tergantung pada orientasi dari kepala pengguna.
Teknologi HUD
*CRT (Cathode Ray Tube)
Hal yang sama untuk semua HUD adalah sumber dari gambar yang ditampilkan, CRT, yang dikemudikan oleh generator. Tanda generator mengirimkan informasi ke CRT berbentuk koordinat x dan y. Hal itu merupakan tugas dari CRT untuk menggambarkan koordinat senagai piksel, yaitu grafik. CRT membuat piksel dengan menciptakan suatu sinar elektonil, yang menyerang permukaan tabung (tube).
*Refractive HUD
Dari CRT, sinar diproduksi secara paralel dengan sebuah lensa collimating. Sinar paralel tersebut diproyeksikan ke kaca semitrasnparan (kaca gabungan) dan memantul ke mata pilot. Salah satu keuntungan dari reaktif HUD adalah kemampuan pilot untuk menggerakkan kepalanya dan sekaligus melihat gambar yang ditampilkan pada kaca gabungan.
*Reflective HUD
Kerugian dari HUD reflektif adalah akibatnya pada besarnya tingkat kompleksitas yang terlibat dalam meproduksi penggabungan lekungan dari segi materi dan rekayasa. Keuntungan besarnya adalah kemampuan pada peningkatan tanda brightness (terang), meminimalisir redaman cahaya dari pemandangan visual eksternal dan adanya kemungkinan untuk menghemat ruang di kokpit, karena lensa collimating yang tidak diperlukan.
*System Architecture
HUD komputer mengumpulkan informasi dari sumber – sumber seperti IRS (Inertial Reference System), ADC (Air Data Computer), radio altimeter, gyros, radio navigasi dan kontrol kokpit. Diterjemahkan ke dalam koordinat x dan y, komputer HUD selanjutnya akan menyediakan informasi yang dibutuhkan untuk hal apa yang akan ditampilkan pada HUD ke generator simbol. Berdasarkan informasi ini, generator simbol menghasilkan koordinat yang diperlukan pada grafik, yang akan dikirmkan ke unit display (CRT) dan ditampilkan sebagai simbol grafik pada permukaan tabung.
Kebanyakan HUD militer mudah memberikan atau melewatkan isyarat kemudi FD melalui generator simbol. HUD memperhitungkan isyarat kemudi pada komputer HUD dan hal tersebut membuatnya sebagai sistem ‘standalone’. Sipil HUD merupakan fail-passive dan mencakup pemeriksaan internal yang besar mulai dari data sampai pada simbol generator. Kebanyakan perselisihan perhitungan dirancang untuk mencegah data palsu tampil.
*Display Clutter
Salah satu perhatian penting dengan simbologi HUD adalah kecenderungan perancang untuk memasukkan data terlalu banyak, sehingga menghasilkan kekacauan tampilan. Kekacauan tampilan ini jauh dari eksklusif untuk HUD, tetapi hal ini sangat kritis pada saat melihat ke arah tampilan. Setiap simbologi yang tampil pada sebuah HUD harus melayani atau memiliki sebuah tujuan dan mengarahkan peningkatan performa. Kenyataannya, bukan piksel tunggal yang dapat menerangi kecuali dia secara langsung mengarahkan pada penigkatan. Prinsip yang diterapkan pada perancangan HUD adalah ‘ketika dalam keraguan, tinggalkan saja’.
Ada beberapa faktor yang harus dipertimbangkan ketika merancang sebuah HUD, yaitu:
# Bidang penglihatan – Karena mata seseorang berada di dua titik berbeda, mereka melihat dua gambar yang berbeda. Untuk mencegah mata seseorang dari keharusan untuk mengubah fokus antara dunia luar dan layar HUD, layar adalah “Collimated” (difokuskan pada tak terhingga). Dalam tampilan mobil umumnya terfokus di sekitar jarak ke bemper.
#Eyebox – menampilkan hanya dapat dilihat sementara mata pemirsa dalam 3-dimensi suatu daerah yang disebut Kepala Motion Kotak atau “Eyebox”. HUD Eyeboxes modern biasanya sekitar 5 dengan 3 dari 6 inci. Hal ini memungkinkan pemirsa beberapa kebebasan gerakan kepala. Hal ini juga memungkinkan pilot kemampuan untuk melihat seluruh tampilan selama salah satu mata adalah di dalam Eyebox.
#Terang / kontras – harus menampilkan pencahayaan yang diatur dalam dan kontras untuk memperhitungkan pencahayaan sekitarnya, yang dapat sangat bervariasi (misalnya, dari cahaya terang awan malam tak berbulan pendekatan minimal bidang menyala).
#Menampilkan akurasi – HUD komponen pesawat harus sangat tepat sesuai dengan pesawat tiga sumbu – sebuah proses yang disebut boresighting – sehingga data yang ditampilkan sesuai dengan kenyataan biasanya dengan akurasi ± 7,0 milliradians.
#Instalasi – instalasi dari komponen HUD harus kompatibel dengan avionik lain, menampilkan, dll
HUD mengandung tiga komponen utama
•Sebuah Kombinasi/The Combiner
The Combiner adalah bagian dari unit yang terletak tepat di depan pilot. The combiner berada di permukaan dimana informasi diproyeksikan sehingga pilot dapat melihat dan menggunakannya.
•Projector Unit
Unit Proyeksi digunakan untuk memproyeksikan gambar ke Combiner untuk pilot untuk melihat. Unit proyeksi menggunakan Katoda Ray Tube, Dioda cahaya, atau layar kristal cair untuk memproyeksikan gambar.
•Video komputer generasi
Simbol dan data lain yang juga tersedia di beberapa HUDs:
•Boresight atau symbol waterline–menunjukkan dimana pesawat sebenarnya berada (selalu ada pada layar).
•Flight Path Vector(FPV)atau symbol vector kecepatan–menunjukkan dimana pesawat ini benar-benar terjadi, jumlah dari semua gaya yang bekerja pada pesawat. Ebagai contoh,jika pesawat ini bernada up tetapi kehilangan energi, maka FPV symbol akan berada dibawah cakrawala meskipun symbol boresight berada diatas cakrawala. Selama pendekatan dan pendaratan, pilot dapat terbang pendekatan dengan menjaga symbol diFPV keturunan yang dikehendaki sudut dan titik touchdown dilandasan.
•Percepatan energy indicator atau isyarat biasanya di kiri dari symbol FPV, jika pesawat mengalami percepatan maka diatas nya symbol FPV, dan dibawah symbol FPV jika perlambatan.
•Sudut serangan indikator menunjukkan sudut sayap relative terhadap airmass ,sering ditampilkan sebagai “α”.
•Data dan simbol-simbol navigasi untuk pendekatan dan pendaratan, system pemandu penerbangan dapat memberikan isyarat visual didasarkan pada alat bantu navigasi seperti Instrument Landing System atau ditambah Global Positioning System seperti Wide Area Augmentation System.
Tampilannya :
Tangible User Interface
Tangible User Interface, yang disingkat TUI, adalah antarmuka dimana
seseorang dapat berinteraksi dengan informasi digital lewat lingkungan fisik.
Nama inisial Graspable User Interface, sudah tidak lagi digunakan. Salah satu
perintis TUI ialah Hiroshi Ishii, seorang profesor di Laboratorium Media MIT
yang memimpin Tangible Media Group. Pandangan istimewanya untuk tangible UI
disebut tangible bits, yaitu memberikan bentuk fisik kepada informasi digital
sehingga membuat bit dapat dimanipulasi dan diamati secara langsung.
Tampilannya :
Computer
Vision
Computer
Vision adalah ilmu dan teknologi mesin yang melihat, di mana mesin mampu
mengekstrak informasi dari gambar yang diperlukan untuk menyelesaikan tugas
tertentu. Sebagai suatu disiplin ilmu, visi komputer berkaitan dengan
teori di balik sistem buatan bahwa ekstrak informasi dari gambar. Data gambar
dapat mengambil banyak bentuk, seperti urutan video, pandangan dari beberapa
kamera, atau data multi-dimensi dari scanner medis. Sedangkan sebagai disiplin teknologi,
computer vision berusaha untuk menerapkan teori dan model untuk pembangunan
sistem computer vision.
Computer
Vision didefinisikan sebagai salah satu cabang ilmu pengetahuan yang
mempelajari bagaimana komputer dapat mengenali obyek yang diamati. Cabang ilmu
ini bersama Artificial Intelligence akan mampu menghasilkanVisual Intelligence
System. Perbedaannya adalah Computer Vision lebih
mempelajari bagaimana komputer dapat mengenali obyek yang diamati.
Namun komputer grafik lebih ke arah pemanipulasian
gambar (visual) secara digital. Bentuk sederhana dari grafik komputer
adalah grafik komputer 2D yang kemudian berkembang menjadi grafik komputer 3D,
pemrosesan citra, dan pengenalan pola. Grafik komputer sering dikenal dengan
istilah visualisasi data.
Computer
Vision adalah kombinasi antara :
- Pengolahan Citra (Image Processing), bidang yang berhubungan dengan proses transformasi citra/gambar (image). Proses ini bertujuan untuk mendapatkan kualitas citra yang lebih baik.
- Pengenalan Pola (Pattern Recognition), bidang ini berhubungan dengan proses identifikasi obyek pada citra atau interpretasi citra. Proses ini bertujuan untuk mengekstrak informasi/pesan yang disampaikan oleh gambar/citra.
Hubungan
dari kombinasi tersebut dapat dilihat pada gambar berikut :
Fungsi / Proses pada Computer Vision
Untuk
menunjang tugas Computer Vision, terdapat beberapa fungsi pendukung ke dalam
sistem ini, yaitu :
- Proses penangkapan citra (Image Acquisition)
- Image Acqusition pada manusia dimulai dengan mata, kemudian informasi visual diterjemahkan ke dalam suatu format yang kemudian dapat dimanipulasi oleh otak.
- Senada dengan proses di atas, computer vision membutuhkan sebuah mata untuk menangkap sebuah sinyal visual.
- Umumnya mata pada computer vision adalah sebuah kamera video.
- Kamera menerjemahkan sebuah scene atau image.
- Keluaran dari kamera adalah berupa sinyal analog, dimana frekuensi dan amplitudonya (frekuensi berhubungan dengan jumlah sinyal dalam satu detik, sedangkan amplitudo berkaitan dengan tingginya sinyal listrik yang dihasilkan) merepresentasikan detail ketajaman (brightness) pada scene.
- Kamera mengamati sebuah kejadian pada satu jalur dalam satu waktu, memindainya dan membaginyamenjadi ratusan garis horizontal yang sama.
- Tiap‐tiap garis membuat sebuah sinyal analog yang amplitudonya menjelaskan perubahan brightness sepanjang garis sinyal tersebut.
- Kemudian sinyal listrik ini diubah menjadi bilangan biner yang akan digunakan oleh komputer untuk pemrosesan.
- Karena komputer tidak bekerja dengan sinyal analog, maka sebuah analog‐to‐digital converter (ADC), dibutuhkan untuk memproses semua sinyal tersebut oleh komputer.
- ADC ini akan mengubah sinyal analog yang direpresentasikan dalam bentuk informasi sinyal tunggal ke dalam sebuah aliran (stream) sejumlah bilangan biner.
- Bilangan biner ini kemudian disimpan di dalam memori dan akan menjadi data raw yang akan diproses.
- Proses pengolahan citra (Image Processing)
- Tahapan berikutnya computer vision akan melibatkan sejumlah manipulasi utama (initial manipulation) dari data binary tersebut.
- Image processing membantu peningkatan dan perbaikan kualitas image, sehingga dapat dianalisa dan di olah lebih jauh secara lebih efisien.
- Image processing akan meningkatkan perbandingan sinyal terhadap noise (signal‐to‐noise ratio = s/n).
- Sinyal‐sinyal tersebut adalah informasi yang akan merepresentasikan objek yang ada dalam image.
- Sedangkan noise adalah segala bentuk interferensi, kekurangpengaburan, yang terjadi pada sebuah objek.
- Analisa data citra (Image Analysis)
- Image analysis akan mengeksplorasi scene ke dalam bentuk karateristik utama dari objek melalui suatu proses investigasi.
- Sebuah program komputer akan
mulai melihat melalui bilangan biner yang merepresentasikan informasi
visual untuk mengidentifikasi fitur‐fitur spesifik dan
karekteristiknya. - Lebih khusus lagi program image analysis digunakan untuk mencari tepi dan batas‐batasan objek dalam image.
- Sebuah tepian (edge) terbentuk antara objek dan latar belakangnya atau antara dua objek yang spesifik.
- Tepi ini akan terdeteksi sebagai akibat dari perbedaan level brightness pada sisi yang berbeda dengan salah satu batasnya.
- Proses pemahaman data citra (Image Understanding)
- Ini adalah langkah terakhir dalam proses computer vision, yang mana sprsifik objek dan hubungannya diidentifikasi.
- Pada bagian ini akan melibatkan kajian tentang teknik-teknik artificial intelligent.
- Understanding berkaitan dengan template matching yang ada dalam sebuah scene.
- Metoda ini menggunakan program pencarian (search program) dan teknik penyesuaian pola (pattern matching techniques).
Contoh aplikasi dari Computer Vision
Beberapa
aplikasi yang dihasilkan dari Computer Vision antara lain :
1.
Psychology, AI – exploring representation and computation in natural vision
2. Optical Character Recognition – text reading
3. Remote Sensing – land use and environmental monitoring
4. Medical Image Analysis – measurement and interpretation of many types of images
5. Industrial Inspection – measurement, fault checking, process control
6. Robotic – navigation and control
2. Optical Character Recognition – text reading
3. Remote Sensing – land use and environmental monitoring
4. Medical Image Analysis – measurement and interpretation of many types of images
5. Industrial Inspection – measurement, fault checking, process control
6. Robotic – navigation and control
Tampilannya :
Apa itu speech recognition??
perintah suara untuk mengoperasikan komputer, karena speech recognition adalah suatu proses untuk mengkonversikan sinyal akustik (suara) melalui microphone sebagai perintajh pengoperasian komputer atau manuliskan kata-kata (dikte).
Apa yang bisa saya lakukan dengan Speech Recognition??
Anda dapat menggunakan suara Anda untuk mengontrol komputer Anda. Anda dapat mengatakan perintah bahwa komputer akan merespon, dan Anda dapat mendikte teks ke komputer.
Sebelum anda memulai menggunakan Windows Speech Recognition, Anda harus menghubungkan mikrofon ke komputer Anda. Setelah Anda punya mikrofon set up, Anda dapat melatih komputer Anda untuk lebih memahami Anda dengan membuat profil suara bahwa komputer Anda menggunakan untuk mengenali perintah suara Anda dan berbicara. Untuk informasi tentang pengaturan mikrofon, baca Mengatur mikrofon Anda untuk Speech Recognition.
Setelah Anda punya mikrofon dan profil suara set up, Anda dapat menggunakan Speech Recognition untuk melakukan hal berikut:
Kontrol komputer Anda. Speech Recognition mendengarkan dan merespon perintah lisan Anda. Anda dapat menggunakan Speech Recognition untuk menjalankan program dan berinteraksi dengan Windows. Untuk informasi lebih lanjut tentang perintah Anda dapat menggunakan dengan Speech Recognition, lihat perintah umum pada Speech Recognition.
Mendikte dan mengedit teks. Anda dapat menggunakan Speech Recognition untuk mendikte kata-kata ke dalam program pengolah kata atau mengisi formulir online di web browser. Anda juga dapat menggunakan Speech Recognition untuk mengedit teks pada komputer Anda. Untuk informasi lebih lanjut tentang teks mendikte, lihat teks mendikte menggunakan Speech Recognition.
Cara menggunakan speech recognition pada windows 7 :
1. Pertama, klik Start Speech Recognition link pada Control Panel
Start> Control Panel> Ease of access> Speech Recognition. Sekarang pada Windows 7 telah menunjukkan sebuah kotak dialog Selamat datang di Speech Recognition.
2. Sekarang klik ‘Next’ dan kemudian di Pilih Jenis Mikrofon memilih Mikrofon Headset, Desktop Mikrofon atau opsi lainnya.
3. Klik ‘Next’ dan mikrofon langsung terhubung ke Windows 7 atau laptop. sekali lagi klik Next pada kotak dialog Set Up Mikrofon.
4. Coba katakan sesuatu, ketika selesai berbicara ke dalam mikrofon lalu klik ‘Next’.
5. Klik ‘Next’ di ‘Mikrofon lalu Set Up’ pada kotak dialog dan pilih opsi ‘Enable Dokumen Review’ dalam kotak dialog untuk ‘Meningkatkan Keakuratan Speech Recognition’ dan kemudian klik ‘Next’.
6. Sekarang untuk mengaktifkan modus aktivasi suara, Anda harus mengklik ‘Gunakan suara Aktivasi’ Mode.
7. Klik tombol ‘View Reference Sheet’ untuk membuka jendela Windows Help and Support pada 7 komputer Windows .
8. Sekarang klik topik-topik seperti Dikte, Tanda Baca Marks, Common Speech Recognition Perintah dan Karakter Khusus untuk menampilkan informasi mereka. Jika ingin mencetak salah satu topik petunjuk diperluas kemudian klik tombol Print pada toolbar window.
9. Klik tombol ‘Close’ yang dalam Bantuan Windows dan jendela Dukungan dan kemudian klik ‘Next’ tombol untuk membuka ‘Run Speech Recognition Setiap Saat Aku Mulai Computer’ kotak dialog.
10. Sekarang untuk membuka,Bisa dengan Kontrol Komputer Dengan Suara’ kotak dialog, klik tombol ‘Next’.
11. Untuk menjalankan Speech Recognition Tutorial, yang baik diperlukan untuk melatih komputer untuk memahami suara Anda serta yang sangat baik untuk berlatih klik tombol ‘Tutorial Mulai’.
Tampilannya :
2. Kolaborasi Arsitektur Client Side & Server Side
Berikut ini adalah penjelasan mengenai beberapa kolaborasi arsitektur sisi client dan sisi server :A. Arsitektur Single- Tier
Definisi arsitektur single-tier, seperti yang ditunjukkan pada gambar di bawah ini, adalah bahwa semua komponen produksi dari sistem dijalankan pada komputer yang sama. Kelemahan dari jenis ini adalah keamanannya lebih rendah dan kurangnya skalabilitas. Sebuah arsitektur skalabel dapat dengan mudah ketika diperluas atau ditambah untuk memenuhi kebutuhan peningkatan kinerja.
B. Arsitektur Two-tier
Dalam arsitektur klien / server dua lapis , antarmuka pengguna ditempatkan di lingkungan desktop dan sistem manajemen database. Biasanya dalam sebuah server, yang lebih kuat merupakan mesin yang menyediakan layanan bagi banyak klien. Pengolahan informasi dibagi antara sistem user interface lingkungan dan lingkungan server manajemen database.
C. Arsitektur Three-tier
Arsitektur Three-Tier diperkenalkan untuk mengatasi kelemahan dari arsitektur two-tier. Di tiga tingkatan arsitektur, sebuah middleware digunakan diantara sistem user interface lingkungan klien dan server manajemen database lingkungan. Middleware ini diimplementasikan dalam berbagai cara seperti pengolahan transaksi monitor, pesan server atau aplikasi server.
Three tier dengan server pesan
Pada arsitektur ini, pesan akan diproses dan diprioritaskan. Header pesan memiliki prioritas yang mencakup informasi, alamat dan nomor identifikasi. Server pesan dihubungkan ke relasional DBMS dan sumber data lainnya. Sistem pesan alternatif untuk infrastruktur nirkabel.
Three tier dengan aplikasi server
Arsitektur ini memungkinkan server untuk menjalankan sebuah aplikasi pada server lain tidak terdapat di sistem user interface lingkungan klien. Aplikasi dalam arsitektur ini lebih terukur dan biaya instalasinya murah pada satu server.